

HINDUSTAN PETROLEUM CORPORATION LIMITED

Regd. Office: 17, Jamshedji Tata Road, Mumbai - 400020. CIN NO: L23201MH1952GOI008858

SYLLABUS FOR COMPUTER BASED TEST INSTRUMENTATION ENGINEERING POSITIONS

- 1. Electrical and Electronics Measurement
 - a. Electrical circuits
 - b. Analog meters
 - c. Resistance, inductance and capacitance measurement
 - d. Digital Instruments
 - e. Signal generators and analysers
 - f. Energy and power measurement
- 2. Analog Electronics
 - a. Transistor
 - b. Operational Amplifiers
 - c. Signal Generators and filters
 - d. Power devices and applications
 - e. Regulators
 - f. Power converters
- 3. Digital Electronics
 - a. Logic families
 - b. Combinational circuits
 - c. Sequential circuits
 - d. Analysis of sequential circuits
 - e. Programmable logic devices
- 4. Transducers, sensors, actuators and automation
 - a. Measurement systems and temperature measurement
 - b. Pressure and level measurement
 - c. Flow measurement
 - d. Displacement, velocity and speed measurement
 - e. Force, torque, vibration and acceleration measurement
 - f. Advances in sensor technology
 - g. Basics of sensors
 - h. Overview of discrete and continuous processes
 - i. Overview of sensors and transducers
 - j. Actuators
 - k. Industrial automation

5. Automatic Control System and Feedback Control

- a. Introduction and classification of control systems
- b. Signal flow graph
- c. Time Response Analysis
- d. Stability Analysis
- e. Root locus
- f. Frequency response analysis
- g. Feedback in control systems
- h. Importance and classification of control systems
- i. Dynamics of electrical and mechanical systems
- j. Open loop and closed loop systems
- 6. Process Loop Components
 - a. Introduction to transmitters
 - b. Final control elements
 - c. Pneumatic components and systems
 - d. Hydraulic components and systems
 - e. Auxiliary components
 - f. Hazardous area classification and safety
- 7. Microprocessors and Microcontrollers
 - a. Microprocessor and microcontroller architecture basics
 - b. Programming basics
 - c. On-chip peripherals
 - d. External peripherals
 - e. RISC microcontroller
- 8. Power Electronics and Drives
 - a. Power devices
 - b. Rectifiers and converters
 - c. Inverter and cycloconverter
 - d. Power supply and quality
 - e. Machine drives
 - f. Control methods for power converters
- 9. Industrial Automation, Programming Logic Controller (PLC) and its Applications
 - a. Introduction to automation
 - b. Instrumentation standard protocols
 - c. Introduction to PLC
 - d. Application of PLC
 - e. Interfacing to PLC
 - f. Distributed control system
 - g. Relay logic
 - h. Times, counters instruction

- i. Serial communication
- j. PLC interfacing to AC and DC drives
- k. Development of SCADA
- 1. Maintenance and troubleshooting of PLC based industrial system
- m. Programming of PLC
- n. Advanced PLC function
- o. Open system interconnection (OSI) model
- 10. Analytical Instrumentation
 - a. Chemical instrumental analysis, classification
 - b. UV-Visible spectrophotometers
 - c. Emission spectra, quantitative measurements, flame photometer
 - d. Chromatographic methods
 - e. Different types of gas analysers
 - f. Chemical sensors
- 11. Instrumentation and System Design
 - a. Concept of instrumentation design
 - b. Need analysis with respect to systems deployed
 - c. Noise sources, loops
 - d. Shielding Effectiveness, absorption and reflection loss
 - e. ESD, inductive charging human body model, ESD protection in equipment
 - f. Electronic design guideline noise
 - g. Enclosure design guidelines, system specifications and standards
 - h. Printed circuit board design guideline
 - i. Reliability
 - j. Bath tub curve
 - k. MTTF, MTTR, MTBF
- 12. Optimization and Optimal Control
 - a. Optimization fundamentals
 - b. Unconstrained optimization
 - c. Constrained optimization
 - d. Optimal control problems
 - e. Dynamic optimization

13. Process Instrumentation and Control

- a. Introduction to process
- b. Control system
- c. Modelling of process
- d. System identification
- e. Multivariate and multi-loop control
- f. Control schemes for process applications
- 14. Industrial Automation and Control
 - a. Introduction and evolution of automation

- b. Elements of process control loop
- c. Concepts of process variable, set point, controlled variable, manipulated variable and load variable
- d. Introduction to network
- e. Overall fieldbus trends
- f. Instrumentation network design
- g. HART network and Foundation Fieldbus network
- h. Modbus TCP/IP
- i. Introduction to distributed control system
- j. Integration of PLC, DCS, HMI and SCADA
- k. Integration with RTUs, fieldbus and data highway
- 1. Introduction to knowledge based software
- m. Data analytics tools
- n. Historian sizing
- o. Features extraction
- p. Features selection correlation analysis
- q. Principle component analysis
- r. Entropy
- s. Data labelling
- t. Machine learning approaches: Parametric and non-parametric model
- 15. Programming Engineering and Management
 - a. Objectives of project management
 - b. Types, classification and life cycle of projects
 - c. Organization structure
 - d. Management functions
 - e. Project planning
 - f. Project scheduling
 - g. Network scheduling techniques
 - h. Types of estimates, pricing process
 - i. ISA standards
 - j. Preliminary Engineering Documents
 - k. Front End Engineering and Design Documents
 - 1. Risk Management

16. Industrial Internet of Things (IIoT)

- a. Introduction to IIoT and manufacturing basics
- b. IoT architecture
- c. Basic elements of IIoT
- d. Components of IIoT
- e. IoT platforms and data security
- f. Data analytics and cloud services
- g. Industrial Internet
- h. Field devices (sensors/ actuators)
- i. Middleware industrial internet of things, platforms

- j. Data analytics and security
- k. Industry 4.0
- 17. Soft Computing, Artificial Intelligence and Machine Learning for Process Control
 - a. Artificial Intelligence fundamentals
 - b. Neural network
 - c. Fuzzy logic
 - d. Genetic algorithms
 - e. Evolutionary computation
 - f. Introduction to Machine Learning
 - g. Classification of Machine Learning algorithms
 - h. Regression and classification
 - i. Supervised, unsupervised and semi-supervised learning, algorithms
 - j. Gradient descent algorithm, cost function, activation functions, data preprocessing and transformation techniques
 - k. Applications of ML to process control
 - l. Development of models
 - m. Model validations
 - n. Development of data based controls
 - o. Data based controls and ML based controls for process control applications

18. Basics of programming C and Python programming languages

NOTE: The syllabus/topics mentioned are indicative in nature. Candidates are expected to possess significant knowledge/proficiency pertaining to the relevant subjects and their qualifying degree.